Coherent Structures in Nonlocal Dispersive Active-Dissipative Systems

نویسندگان

  • Te-Sheng Lin
  • Marc Pradas
  • Serafim Kalliadasis
  • Demetrios T. Papageorgiou
  • Dmitri Tseluiko
چکیده

We analyze coherent structures in nonlocal dispersive active-dissipative nonlinear systems, using as a prototype the Kuramoto–Sivashinsky (KS) equation with an additional nonlocal term that contains stabilizing/destabilizing and dispersive parts. As for the local generalized Kuramoto–Sivashinsky (gKS) equation (see, e.g., [T. Kawahara and S. Toh, Phys. Fluids, 31 (1988), pp. 2103–2111]), we show that sufficiently strong dispersion regularizes the chaotic dynamics of the KS equation, and the solutions evolve into arrays of interacting pulses that can form bound states. We analyze the asymptotic characteristics of such pulses and show that their tails tend to zero algebraically but not exponentially, as for the local gKS equation. Since the Shilnikov-type approach is not applicable for analyzing bound states in nonlocal equations, we develop a weak-interaction theory and show that the standard first-neighbor approximation is no longer applicable. It is then essential to take into account long-range interactions due to the algebraic decay of the tails of the pulses. In addition, we find that the number of possible bound states for fixed parameter values is always finite, and we determine when there is long-range attractive or repulsive force between the pulses. Finally, we explain the regularizing effect of dispersion by showing that, as dispersion is increased, the pulses generally undergo a transition from absolute to convective instability. We also find that for some nonlocal operators, increasing the strength of the stabilizing/destabilizing term can have a regularizing/deregularizing effect on the dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liquid film coating a fiber as a model system for the formation of bound states in active dispersive-dissipative nonlinear media.

We analyze the coherent-structure interaction and the formation of bound states in active dispersive-dissipative nonlinear media using a viscous film coating a vertical fiber as a prototype. The coherent structures in this case are droplike pulses that dominate the evolution of the film. We study experimentally the interaction dynamics and show evidence for formation of bound states. A theoreti...

متن کامل

Hydrodynamic shocks in microroller suspensions

We combine experiments, large scale simulations and continuum models to study the emergence of coherent structures in a suspension of magnetically driven microrollers sedimented near a floor. Collective hydrodynamic effects are predominant in this system, leading to strong density-velocity coupling. We characterize a uniform suspension and show that density waves propagate freely in all directi...

متن کامل

On Nonlocal Monotone Difference Schemes

We provide error analyses for explicit, implicit, and semi-implicit monotone finitedifference schemes on uniform meshes with nonlocal numerical fluxes. We are motivated by finite-difference discretizations of certain long-wave (Sobolev) regularizations of the conservation laws that explicitly add a dispersive term as well as a nonlinear dissipative term. We also develop certain relationships be...

متن کامل

From coherent shocklets to giant collective incoherent shock waves in nonlocal turbulent flows

Understanding turbulent flows arising from random dispersive waves that interact strongly through nonlinearities is a challenging issue in physics. Here we report the observation of a characteristic transition: strengthening the nonlocal character of the nonlinear response drives the system from a fully turbulent regime, featuring a sea of coherent small-scale dispersive shock waves (shocklets)...

متن کامل

Mode-locking via dissipative Faraday instability

Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2015